Heavy Ion Fusion Gas Desorption Issues A.W. Molvik^{1,2} ## With contributions from F.M. Bieniosek^{1,3}, J.J. Barnard^{1,2}, E.M. Bringa², D.A. Calahan², C.M. Celata^{1,3}, R.H. Cohen^{1,2}, A. Friedman^{1,2}, M.A. Furman³, J.W. Kwan^{1,3}, B.G. Logan^{1,3}, W.R. Meier², A. Sakumi⁴, P.A. Seidl^{1,3},W. Stoeffl², S.S. Yu^{1,3}, ¹ HIF-VNL, ² LLNL, ³ LBNL, ⁴CERN Accelerators for HIF have an economic incentive to fit beam tubes tightly to beams and to repetitively pulse at ~5Hz. This places them at risk from gas desorption runaway, and from electron clouds produced by secondary electrons and ionization of gas. We use a variety of charged particle diagnostics in quadrupole magnets and we measure the flux of electrons and gas evolved from a target, near grazing incidence. We are adding electron modules to the WARP beam-dynamics PIC code, with the goal of a self-consistent, experimentally-validated tool for predicting electron effects in positive-beam accelerators.